Bilbliography

[Bar52]R. Barer. Interference Microscopy and Mass Determination. Nature, 169(4296):366–367, 1952. doi:10.1038/169366b0.
[CCC+06]T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. Applied Optics, 45(5):851, feb 2006. doi:10.1364/ao.45.000851.
[DW52]H. G. Davies and M. H. F. Wilkins. Interference Microscopy and Mass Determination. Nature, 169(4300):541, 1952. doi:10.1038/169541a0.
[SCG+17]M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller. 3d correlative single-cell imaging utilizing fluorescence and refractive index tomography. Journal of Biophotonics, pages n/a, aug 2017. doi:10.1002/jbio.201700145.
[SSM+15]M. Schürmann, J. Scholze, P. Müller, C. J. Chan, A. E. Ekpenyong, K. J. Chalut, and J. Guck. Chapter 9 - Refractive index measurements of single, spherical cells using digital holographic microscopy. In Ewa K Paluch, editor, Biophysical Methods in Cell Biology, volume 125 of Methods in Cell Biology, pages 143–159. Academic Press, 2015. doi:10.1016/bs.mcb.2014.10.016.
[SSM+16]M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan. Cell nuclei have lower refractive index and mass density than cytoplasm. Journal of Biophotonics, 9(10):1068–1076, oct 2016. doi:10.1002/jbio.201500273.